Effect of Reduction in Brain β-Amyloid Levels on Cognitive Decline in Randomized Clinical Trials: An Updated Instrumental Variable Meta-Analysis

Changyu Shen, Ph.D,¹ Menglan Pang, Ph.D,¹ Jim E. Galvin, M.D, MPH,² Robert W. Platt, Ph.D.,³ Ling Zhu, Ph.D,¹ Audrey Gabelle, M.D, Ph.D,¹ Arie Gafson, M.D, Ph.D,¹ Ivana Rubino, Ph.D,¹ Shibeshih Belachew, M.D, Ph.D,¹ Carl de Moor, Ph.D¹

> 1. Biogen Digital Health, Biogen Inc., Cambridge, MA, USA 2. Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA 3. McGill University, Department of Epidemiology, Biostatistics, and Occupational Health, Montreal, QC, Canada

Disclosures

- Changyu Shen, Menglan Pang, Ling Zhu, Audrey Gabelle, Arie Gafson, Ivana Rubino, Shibeshih Belachew and Carl de Moor are employees and shareholders of Biogen inc.
- Jim E. Galvin MD, MPH is a Professor of Neurology at University of Miami, consultant for Biogen, Alpha Cognition, Eisai, and Cognivue, and has research funding from NIH, and clinical income from patient care.
- Robert W. Platt, PhD, has an ongoing consulting arrangement with Biogen.
- Aducanumab is approved for use in the following markets: the United States, the United Arab Emirates, and Qatar. In the rest of the world, it is an investigational drug. Its efficacy and safety have not been established in Spain.

Background

- Brain β -amyloid plaque deposits are one of the defining pathological hallmarks of Alzheimer's disease (AD)
- Basic science, pre-clinical models and clinical studies have highlighted that removal of β-amyloid plague is a relevant target for slowing AD disease progression
- Randomized clinical trials (RCTs) of the rapeutic agents targeting β -amyloid (directly or indirectly) have yielded inconsistent results on the relationship between β -amyloid reduction and slowing of cognitive decline

3

Instrumental variable meta-analysis

Research

Effect of reductions in amyloid levels on cognitive change in randomized trials: instrumental variable meta-analysis

BMJ 2021 ; 372 doi: https://doi.org/10.1136/bmj.n156 (Published 25 February 2021) Cite this as: BMJ 2021;372:n156

Instrumental-variable confounding bias

Meta-analysis statistical power

How does an instrumental variable work?

How does an instrumental variable work?

Change in CDR-SB versus change in SUVr for the EMERGE trial (Aducanumab)

CDR-SB change for each 0.1 unit reduction of β-amyloid PET-SUVr

Summary of Ackley et al. study

- Trials: 14 randomized controlled trials of 8 drugs that target an amyloid mechanism
- **Population**: AD dementia or mild cognitive impairment due to AD
- Clinical endpoints:
 - Mini-Mental State Examination (MMSE)
 - Clinical Dementia Rating-Sum of Boxes (CDR-SB)
 - Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog)
- In their original work, Ackley et al. provided a publicly available web interface containing an interactive version of their analytic approach to encourage recalculation of their results when updated or new data are available

Pooled estimates
All data
All antibody data
All published data
All published antibod

Primary analysis was on MMSE endpoint

Assessment of Ackley et al. 2021 identified 3 main areas for data updates

Limitations in data access

- MMSE data used for the Lecanemab trial [NCT01767311] included in the original analysis were computed using an algorithm that converts ADCOMS to MMSE
- MMSE data for Verubecestat-2 [NCT01953601] trial were derived by conversion of CDR-SB into MMSE in the original analysis

Data inconsistencies

- In the original analysis, the values used for standard error were inconsistent with the source for 4 trials
 - For example, the standard deviation (SD) was used as the standard error (SE) for some trials
 - A total of 11 figures of SE affected
- In the original analysis, point estimates were incorrect in two cognitive endpoints (CDR-SB & ADAS-Cog) in 1 trial.

- We used direct source data for Lecanemab [NCT01767311] and Verubecestat-2 [NCT01953601] trials
- We corrected data inconsistencies where applicable (SE, point estimates)

The same instrumental-variable-based meta-analysis was then repeated using the updated data from 16 trials

Analysis

UPDATED

16 Trials included in the updated instrumental variable meta-analysis

Trial	Trial number	Data Updates	Trial	Trial number	Data Updates
Bexarotene (BEAT-AD)	<u>NCT01782742</u>		Bapineuzumab-2b (APOE-e4 Non-Carrier)	<u>NCT00574132</u>	
Solanezumab-1 & 2 Extension (EXPEDITION EXT)	NCT01127633		Verubecestat-1 (EPOCH)	NCT01739348	
Solanezumab-3 (EXPEDITION 3)	<u>NCT01900665</u>		Verubecestat-2 (APECS)	<u>NCT01953601</u>	Correct inconsistency Use source data
LY450139-1 [Semagacestat]	<u>NCT00762411</u>		Lecanemab	<u>NCT01767311</u>	Use source data
LY450139-2 [Semagacestat]	<u>NCT00594568</u>		Aducanumab-1 (EMERGE)	<u>NCT02484547</u>	
Gantenerumab	<u>NCT01224106</u>	Correct inconsistency	Aducanumab-2 (ENGAGE)	<u>NCT02477800</u>	Correct inconsistency
Bapineuzumab-1	<u>2004-004120-12</u> (EudraCT)	Correct inconsistency	Aducanumab-3 (PRIME)	NCT01677572	Added trial
Bapineuzumab-2a (APOE-e4 Carrier)	<u>NCT00575055</u>		Donanemab (TRAILBLAZER-ALZ)	<u>NCT03367403</u>	Added trial

Results of the updated meta-analysis – Pooled estimates

Effect of the reduction in β -amyloid SUVr on change in cognitive endpoints

Cognitive endpoints	Original analysis (All data)	Updated analysis (All data)		
	Effect (95% CI)	Effect (95% CI)	P value	
CDR-SB	0.058 (-0.031, 0.15)	0.09 (0.034, 0.15)	0.0016	
ADAS-Cog	N.A.	0.33 (0.12, 0.55)	0.0025	
MMSE	0.034 (-0.056, 0.12)	0.13 (0.017, 0.24)	0.024	

Positive values of the estimate – for each 0.1-unit reduction in SUVr – indicate β -amyloid reduction slows cognitive decline

• MMSE was the main clinical endpoint driving the conclusion in Ackley *et al.* study, while this updated analysis further suggested that it may lack sensitivity in capturing progression in cognitive decline as compared with CDR-SB and ADAS-Cog (i.e. higher p-values for MMSE)

Results of the updated meta-analysis – Sensitivity analyses

		Effect (95% CI)	P-value
Initial trials with data updates		0.055 (-0.025, 0.13)	0.18
All data	•	0.09 (0.034, 0.15)	0.0016
All antibody data	•	0.088 (0.033, 0.14)	0.0017
Most recent β-amyloid targeting antibodies*	•	0.095 (0.039, 0.15)	0.0008
-0.4 0	0.4		
		Effect (95% CI)	P-value
Initial trials with data updates		0.31 (-0.017, 0.64)	0.063
All data		0.33 (0.12, 0.55)	0.0025
All antibody data		0.4 (0.19, 0.6)	0.0001
Most recent β-amyloid targeting antibodies*	~	0.41 (0.2, 0.61)	0.0001
-0.8 -0.4 0	0.4 0.8		
		Effect (95% CI)	P-value
Initial trials with data updates		0.1 (-0.023, 0.23)	0.11
All data		0.13 (0.017, 0.24)	0.024
All antibody data		0.14 (0.035, 0.24)	0.0092
Most recent β-amyloid targeting antibodies*		0.16 (0.054, 0.27)	0.0032
Amyloid reduction harmful	0.4	Amyloid reduction helpfu	

CDR-SB

ADAS-Cog

MMSE

Positive values of the effect estimate – for each 0.1-unit reduction in PET-SUVr – indicate β -amyloid reduction slows cognitive decline. *The most recent β -amyloid targeting antibodies included Gantenerumab [NCT01224106], Aducanumab [NCT02484547, NCT02477800, NCT01677572], Lecanemab [NCT01767311], and Donanemab [NCT03367403] trials.

- Instrumental variable analysis requires the absence of off-target effect from a drug
- Hence, analyses based on antibodies are likely to be more accurate due to specificity of antibodies and their direct impact on β-amyloid plaques

Limitations

- Heterogeneous population: β -amyloid removal may have different effect on cognitive decline for different subjects
- Heterogeneity in radiotracers: PET SUVr may not be totally matched
- Impact of amyloid plaque removal on cognitive decline and functional activities may not be fully elucidated in the short-term setting of most clinical trials where a potentially delayed-onset effect cannot be captured
- These limitations work against our ability to detect a causal relationship between β -amyloid removal and cognitive decline. That a statistically significant causal association is consistently demonstrated on all 3 cognitive endpoints despite those limitations highlights the potential of β -amyloid as a viable biological target in AD

Conclusion

After updating and augmenting this **instrumental variable** meta-analysis from Ackley et al., we demonstrate through combined results of 16 trials that there is a **consistent** and statistically significant beneficial and causal impact of PET β-amyloid SUVr change on 3 commonly used measures of cognitive decline

J hank you

Effect of Reduction in Brain β-Amyloid Levels on Cognitive Decline in Randomized Clinical Trials: An Updated Instrumental Variable Meta-Analysis

Changyu Shen, Ph.D,¹ Menglan Pang, Ph.D,¹ Jim E. Galvin, M.D, MPH,² Robert W. Platt, Ph.D.,³ Ling Zhu, Ph.D,¹ Audrey Gabelle, M.D, Ph.D,¹ Arie Gafson, M.D, Ph.D,¹ Ivana Rubino, Ph.D,¹ Shibeshih Belachew, M.D, Ph.D,¹ Carl de Moor, Ph.D¹

> 1. Biogen Digital Health, Biogen Inc., Cambridge, MA, USA 2. Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA 3. McGill University, Department of Epidemiology, Biostatistics, and Occupational Health, Montreal, QC, Canada

